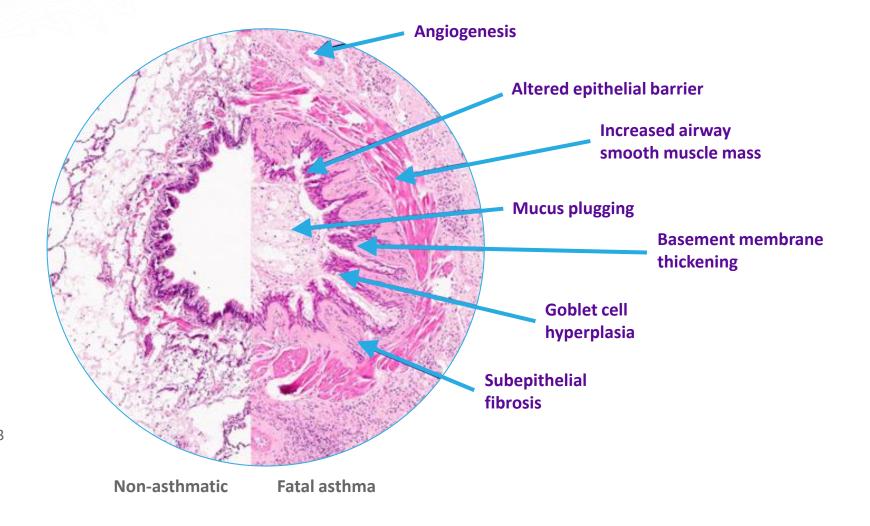
# Features of airway remodelling and the role of epithelial cytokines


Learn more about the histological features of airway remodelling in asthma and their associations with epithelial cytokines



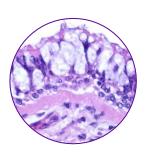
#### Features of airway remodelling in asthma



- Airway remodelling is heterogeneous and can be observed across the spectrum of asthma severity<sup>1</sup>
- In asthma, airway remodelling refers to structural changes that can occur in both the small and large airways<sup>2</sup>
- These structural changes are orchestrated by crosstalk between a variety of immune and non-immune cells within the airway wall and submucosa<sup>2,3</sup>



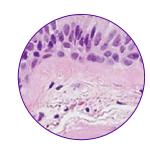



## Structural consequences of airway remodelling



Goblet cell metaplasia and increased mucus production<sup>1,2</sup>




Airway blockage



Increased basal membrane thickness<sup>1,2</sup>



Increased matrix deposition leads to airway narrowing



Airway smooth muscle hyperplasia and hypertrophy<sup>3</sup>

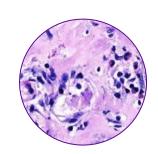


Promotes airway hyperresponsiveness



**Epithelial shedding**<sup>2,4,5</sup>

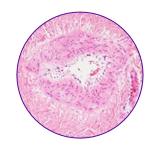



May contribute to damage as external insults penetrate the airway wall



Subepithelial fibrosis<sup>2,6</sup>




Can lead to fixed airway obstruction

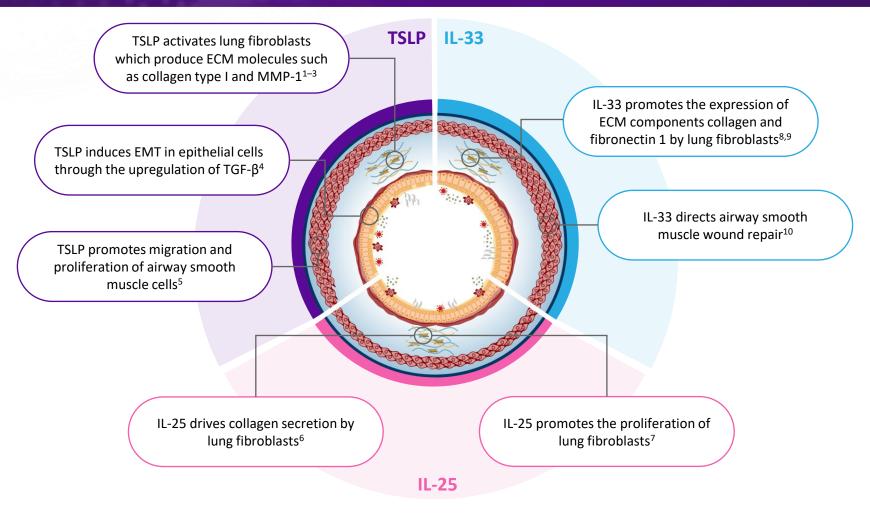


Angiogenesis<sup>7</sup>



Promotes immune cell infiltration




Images adapted from Rosen Y. Bronchial goblet cell hyperplasia. 2009. In: Atlas of pulmonary pathology. Available from: https://www.flickr.com/photos/pulmonary\_pathology/3705951876 (Accessed 6 April 2023), Shifren A, et al. J Allergy (Cairo) 2012;2012:316049, Doeing DC, Solway J. J Apply Physiol (1985) 2013;114:834–843, Kubo T, et al. Lab Invest 2019;99:158–168, Gordon IO, et al. Arch Pathol Lab Med 2009;133:1096–1105 and Galambos C, et al. Ann Am Thorac Soc 2018;15:1359–1362



<sup>1.</sup> Bartemes KR, Kita H. Clin Immunol 2012;143:222–235; 2. Holgate ST. Immunol Rev 2011;242:205–219; 3. Doeing DC, Solway J. J Appl Physiol 2013;114:834–843; 4. Yang Y, et al. Clin Respir J 2021;15:1027–1045; 5. Calvén J, et al. Int J Mol Sci 2020;21:8907; 6. Cohen L, et al. Am J Respir Crit Care Med 2007;176:138–145; 7. Keglowich LF, Borger P. Open Respir Med J 2015;9:70–80

# Epithelial cytokines can play diverse, yet often overlapping, roles in airway remodelling in asthma



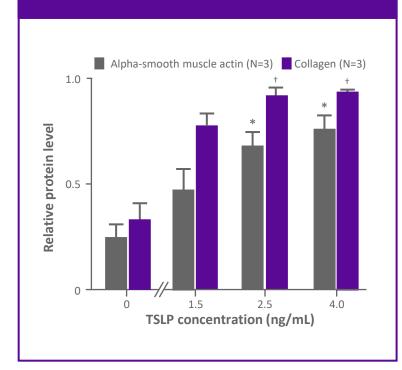


Evidence based on in-vitro experimental data

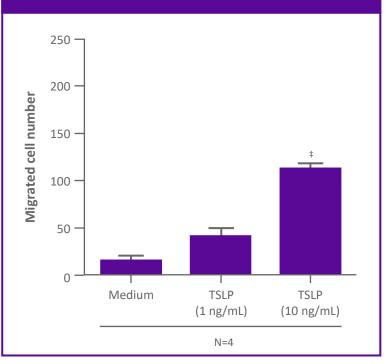
ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; IL, interleukin; MMP-1, matrix metalloproteinase-1; TGF, transforming growth factor; TSLP, thymic stromal lymphopoietin

1. Cao L, et al. Exp Lung Res 2018;44:288–301; 2. Wu J, et al. Cell Biochem Funct 2013;31:496–503; 3. Jin A, et al. Biochim Biophys Acta Mol Cell Res 2021;1868:119083; 4. Cai L-M, et al. Exp Lung Res 2019;45:221–235;

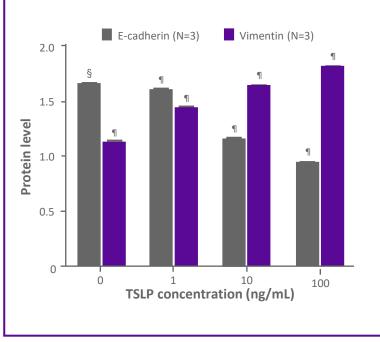
5. Redhu NS, et al. Sci Rep 2013;3:2301; 6. Gregory LG, et al. Thorax 2013;68:82–90; 7. Xu X, et al. Exp Biol Med (Maywood) 2019;244:770–780; 8. Saglani S, et al. J Allergy Clin Immunol 2013;132:676–685;


9. Guo Z, et al. J Asthma 2014;51:863–869; 10. Kaur D, et al. Allergy 2015;70:556–567




## Evidence for TSLP in airway remodelling in asthma



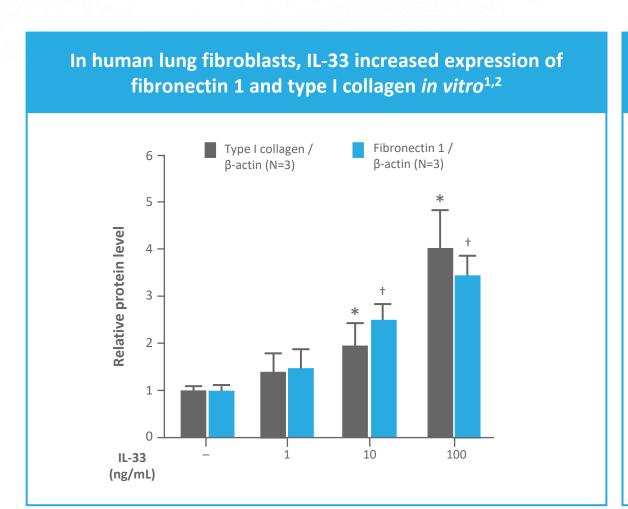

In human lung fibroblasts, TSLP increased expression of collagen and alpha-smooth muscle actin in vitro<sup>1,2</sup>

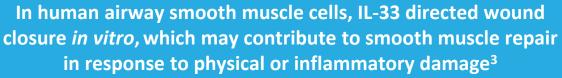


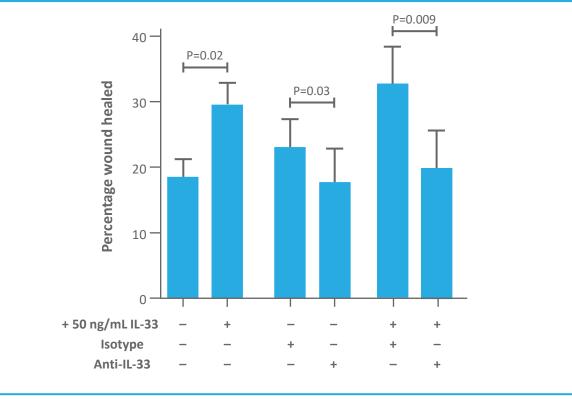
In human airway smooth muscle cells, TSLP induced migration, which may contribute to increased smooth muscle mass in vitro<sup>3</sup>



In human airway epithelial cells, TSLP downregulated epithelial marker E-cadherin and upregulated mesenchymal marker vimentin *in vitro*<sup>4</sup>





Figures adapted from Cao L, et al. Exp Lung Res 2018;44:288–301, Redhu NS, et al. Sci Rep 2013;3:2301 and Cai L-M, et al. Exp Lung Res 2019;45:221–235 \*P<0.05 vs GAPDH control (smooth muscle actin); \*P<0.05 vs GAPDH control (collagen); \*P<0.001 vs medium control; \*P<0.001 GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TSLP, thymic stromal lymphopoietin




## Evidence for IL-33 in airway remodelling in asthma



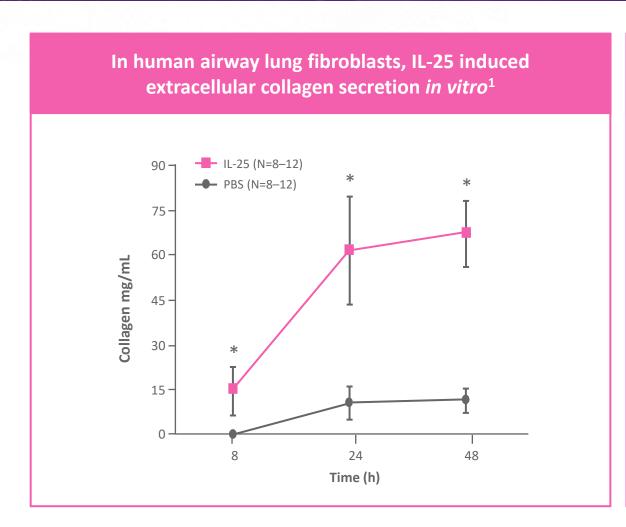


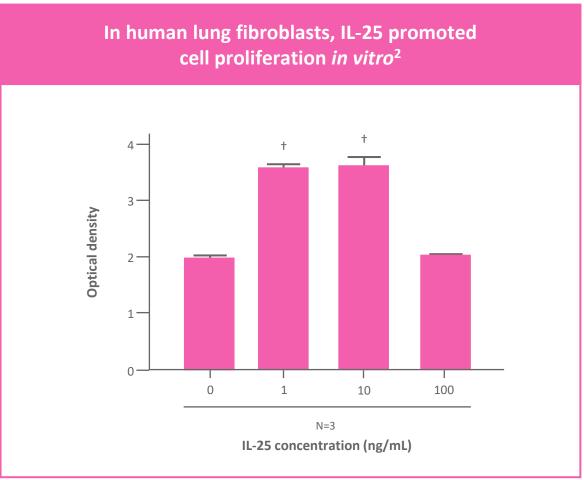




Figures adapted from Guo Z, et al. J Asthma 2014;51:863-869 and Kaur D, et al. Allergy 2015;70:556-567

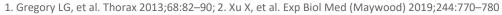



<sup>\*</sup>P<0.05 vs controls; †P<0.01 vs controls


II interleukir

<sup>1.</sup> Guo Z, et al. J Asthma 2014;51:863–869; 2. Saglani S, et al. J Allergy Clin Immunol 2013;132:676–685; 3. Kaur D, et al. Allergy 2015;70:556–567

## Evidence for IL-25 in airway remodelling








Figures adapted from Gregory LG, et al. Thorax 2013;68:82–90 and Xu X, et al. Exp Biol Med (Maywood) 2019;244:770–780 \*P<0.05 vs PBS control group; †P<001 compared with vehicle-treated fibroblasts after 72 hours

IL, interleukin; PBS, phosphate-buffered saline



